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Economics ended up with the theory of rational expectations, 
which maintains that there is a single optimum view of the future, 
that which corresponds to it, and eventually all the market 
participants will converge around that view. This postulate is 
absurd, but it is needed in order to allow economic theory to model 
itself on Newtonian Physics. 

George Soros 

Writing is easy. All you have to do is cross out the wrong words. 

Mark Twain 

One should avoid solving more difficult intermediate problems when 
solving a target problem. 

Vladimir Vapnik, Statistical Learning Theory, 1998 

2/37 



Rell ogrnde L00J) 

/ .... 

4
;:-.:z" .......... ~hulel 

• 

Ptolemy’s Epicycles on Wall Street 

Figure: Ptolemy’s geo-centric planetary model: the observed planetary 
motion is a motion on an epicycle whose center moves on a larger orbit. 
For more, watch a TEDx talk by Ben Vigoda, CEO of Gamalon, 
https://youtu.be/PCs3vsoMZfY. 3/37 
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◄ □ oP 

In this presentation: 

I Where do we stand in both industry and academia after the 
Black-Scholes-Merton groundbreaking work of 1973? 

I Are there any viable (meaningful and tractable) alternatives? 

I Insights from Physics and Reinforcement Learning 

I Model-free option pricing and hedging by Reinforcement 
Learning (Q-learning and Fitted Q Iteration) 

I Summary 
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PHYSICISTS IN FINANCE 
T~i~i~r1~~~1ftt~~ ~~~ Though the challenges of "quantitative directly into financefollow­

inggraduat.eschool or from 
a postdoctoral position. 
Less common arc the ~mi­
grCs from full-time "legiti­
mate" physicist positions. 
Certainly t.his observation 
implies t.hat one cause of 
the physics-to-finoncetrnn• 
sition is the shortage of jobs 
in physics, especially for 
those just starting their ca-

job market, the allure of a 
career in finance is obvious: 
The industry has numerous 
opportunities that demand 
the physicist's quantitative 
skills, and pay handsomely 
for them. Those contem­
plating such a move, how­
ever, need to look beyond 
these immediate oonsidera­
tions, for the culture of li-

finance" are diverse and often 
exhilarating, success for the erstwhile 
physicist is not at all assured. What 
factors are involved in making the 

transition to finance? 

Joseph M. Pimbley 

nance differs markedly from that of physics, having dif­
ferent goals and philosophies, work styles, even dress codes. 
'lb be successful on Wall Street, the physicist must willingly 
adapt lo Wall Street's ways. 

To add precision to the phrase ~physicists in finance: 
I am using "physicists• lo denote PhD recipients and 
~finance: to re~cr? t~e disciplin~ th,at .~~uire ~c gr~t-

reers. But it is regrettable 
that younger physicists, who have not had the opportunity 
t.o explore their chosen disciplines and their abilities on 
their own, are more likely to shift career goals. Older 
colleagues, by contrast, have orehestrated successful re­
scareh projeds with lasting contributions, and are there­
fore much heller equipped to contemplate leaving ihe 
~~~s!cs p~~r~si~~; Th;~ kno_;:' ~hat they are forsaking 

Figure: ”To be successful on Wall Street, the physicist must willingly 
adapt to Wall Street’s ways.” 
http://www.maxwell-consulting.com/Physicists Finance low mem.pdf 

I ”In finance, you would be mostly solving a diffusion equation 
with various boundary conditions.” 

I Econophysics! (J.-P. Bouchaud, E.Stanley, and others) 
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In this presentation: Option pricing without PDEs or a 
model? 

Sounds like a scientific blasphemy or maybe as Luddites? 

Figure: Luddites (1811-1816) protested the use of machinery in a 
”fraudulent and deceitful manner” to get around standard labour 
practices. 
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◄ □ oP 

Simplicity and beauty in scientific theories 

”Everything should be made as simple as possible, but not 
simpler.” (Albert Einstein) 

”A physical law must possess mathematical beauty.” (Paul Dirac). 

”Let’s trivialize the problem...” (Lev Landau). 
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◄ D 

Partial Differential Equations == simplicity and beauty? 

Figure: Isaac Newton 

I Newtonian mechanics... 

I The diffusion equation... 

I The Black-Scholes equation... 

I The Schrödinger equation... 
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Competitive market equilibrium = physics of Newton and 
Boltzmann 

I D. Duffie, ”Black, Scholes and Merton - Their Central 
Contributions to Economics” (1997) 

I P. Bernstein, ”Capital Ideas: the improbable origins of modern 
Wall Street”, Wiley 2005 

I Duffie: ”While there are important alternatives, a current 
basic paradigm for valuation, in both academia and in 
practice, is that of competitive market equilibrium”. The 
price is the price that equates total demand to total supply. 
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Competitive market equilibrium in Finance 

I Three Nobel Prizes in Economics for work based on the 
paradigm of market equilibrium: 

I Modigliniani-Miller (1958): irrelevance of capital structure for 
the market value of a corporation. 

I The Capital Asset Pricing Model (CAPM) of William Sharpe 
(1964). 

I The Black-Scholes option pricing theory (1973) (no-arbitrage 
as a weaker form of market equilibrium) 

I Market equilibrium theories ”model themselves on Newtonian 
physics” (G. Soros). 

I More precisely, they describe a thermodynamics equilibrium of 
statistical mechanics of Ludwig Boltzmann (1844-1906). 
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Does the Black-Scholes model pass Einstein’s test? 

Two key elements : 

I Option pricing by replication (dynamic hedging) 

I Taken to the continuous-time limit Δt → 0 

Together, these two steps produce the celebrated Black-Scholes 
equation 

∂Ct ∂Ct 1 ∂2Ct 
+ rSt + σ2S2 − rCt = 0 (1)t∂t ∂St ∂S22 t 

Isn’t it simple and beautiful? 

”I applied the Capital Asset Pricing Model to every moment in a 
warrant’s like, for every possible stock orice and warrant value... I 
stared at the differential equation for many many months... (Fisher 
Black). 
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Black-Scholes model: the main take-aways: 

I Data requirements: two numbers: the current stock price St 
and stock volatility σ (plus parameters for an option) 

I The option price is unique and given by a solution of the BS 
equation. 

I The optimal option hedge (the amount of stock in a 
replicating portfolio) is obtained after the option price is 
computed. 

I Options are redundant (= perfectly replicable in terms of 
stocks and cash - why bother?) and have instantaneously 
zero risk!! 

I (What does it even mean? Time in Finance is fundamentally 
discrete...) 

I ”When people are seeking profits, equilibrium will prevail” 
(Fisher Black). 
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Black-Scholes model as a model of fake markets? 

I Arbitrage pricing gives you an equilibrium price, so that you 
should not trade below it, and you should not trade above it. 

I It only forgot to explain why you should trade at the 
equilibrium price itself! 

I What is the rationale of having entirely redundant financial 
instruments? 

I Options are not redundant because they carry risk! 
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”I certainly hope you are wrong, Herr Professor!” 

Figure: ”A German bank hired a professor from a leading university to 
help quantify its risk. After some months of extensive analysis, the 
professor has concluded that the bank had ”absolutely no risk”. The 
bank’s head of trading responded: ”I certainly hope you are wrong, Herr 
Professor. If you are correct then we can’t be making any money!” 
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What is the main problem with the Black-Scholes model? 

I Does not match option price data? 

I Does not match stock price data (stock prices are not 
lognormal)? 

I Transaction costs are neglected? 

I Discrete hedging? 

I Real markets are incomplete? 

I Risk has disappeared? 
I Question: what is a minimal change to the BS model so that 

a new model 
I Will be more useful/meaningful 
I Will have the same or similar level of tractability as the BS 

model 
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”Match the market” mantras 

The main problem of ’risk-neutral’ Quantitative Finance is that it 
mixes together two problems with the Black-Scholes model: 

I It does not incorporate risk in option 

I The real-world stock price dynamics are not log-normal 

I Risk-neutral models ignore the first problem and pursue the 
second one (in the ”risk-neutral” measure!) 

I The end result are ”match the market” mantras: 
I Parametric mantras: Stochastic volatility models, 

jump-diffusion, Levy models, etc. 
I Non-parametric mantras: Local volatility models, MaxEnt, 

non-parametric Bayes 
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• • Acq11ant 

< D 61 

Ptolemy’s epicycles of ”risk-neutral” Mathematical Finance 

Figure: Ptolemy’s model explained ’imperfections’ of motion of planets by 
postulating that the apparently irregular movements were a combination 
of several regular circular motions seen in perspective from a stationary 
Earth. Ptolemy had separately fitted model parameters for more than 40 
heavenly bodies. 
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Cargo cult of ”risk-neutral” Mathematical Finance 
This theory is not even wrong... 

Figure: Cult members worshiped certain unspecified Americans having 
the name ”John Frum” who they claimed had brought cargo to their 
island during World War II and who they identified as being the spiritual 
entity who would provide cargo to them in the future. 
(https://en.wikipedia.org/wiki/Cargo cult) 
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Control question: model building by subtraction 

Mark Twain’s approach to Quantitative Finance: 
What are the wrong words that should be crossed out when trying 
to improve on the Black-Scholes model? Select all correct answers: 

1. No arbitrage pricing 
2. Risk-less hedges 
3. ”Risk-neutral” option valuation 
4. The continuous-time limit 
5. PDE’s 
6. All of the above 

Correct answers: ? 
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Risk is a science of fluctuations 

I In the Markowitz portfolio theory: risk is Rt = λVar [Πt ] 
I In statistical mechanics, there are models for both equilibrium 

and non-equilibrium fluctuations 

I The BS model neglects fluctuations. This is equivalent to a 
thermodynamic limit in equilibrium statistical mechanics, 
where all fluctuations die off. 

I Market equilibrium models are models where entropy is 
maximized and does not fluctuate: they are models of a ’heat 
death’ of the Universe as an equilibrium system in a 
thermodynamic limit. 

I A $50Bn question: Is it a right limit to use as a reference 
point (or a ’first approximation’) to describe a risky business? 
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”Premature continuous time limit” in the BS model? 

I The continuous-time limit is taken from the start 

I As pricing by replication becomes exact in this limit, all risk is 
instantaneously eliminated 

I To re-install option risk as a first-class citizen of a model, we 
need to revert back to a discrete-time setting! 

I This view will show that the BS equation is just a PDE for a 
mean of the option value in the mathematical limit Δt → 0 

I This limit makes a perfect sense mathematically but not 
financially, as it looses risk: the option magically becomes 
risk-less! 

I But shouldn’t risk in the option be the original purpose, a part 
of option valuation? 
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Pricing and hedging as sequential risk minimization 
I Falls within the class of incomplete market models 
I Keep the time discrete! 
I Hedging amounts to a sequential risk minimization 
I Hedged Monte Carlo (HMC) of Potters and Bouchaud (2001) 

(https://arxiv.org/abs/cond-mat/0008147). 
I Similar to American Monte Carlo of Longstaff and Schwartz 

(2001), but done for hedging of a European option under a 
real (physical) measure 

I Previous work by Follmer and Schweitzer (1989) (”Hedging by 
Sequential Regression: an Introduction to the Mathematics of 
Option Trading”, ASTIN Bulletin 18 , 147-160, 1989. 

I Practical implementation and extensions: V. Kapoor et. al, 
”Optimal Dynamic Hedging of Equity Options: 
Residual-Risks, Transaction-Costs, & Conditioning” 
(https://papers.ssrn.com/sol3/papers.cfm?abstract id=1530046), 
A. Grau, Ph.D. thesis (2007). 
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Discrete-time MDP model for option pricing and hedging 

This work is in parts original and in parts deep. Unfortunately, the 
original parts are not deep, and the deep parts are not original. 

Oscar Wilde 

To define risk in an option, we follow a local risk minimization 
approach. 

Take the view of a seller of a European option (e.g. a put option) 
with maturity T and the terminal payoff of HT (ST ). 

To hedge the option, the seller sets up a replicating (hedge) 
portfolio Πt made of the stock St and a risk-free bank deposit Bt . 
The value of hedge portfolio at any time t ≤ T is 

Πt = ut St + Bt (2) 

where ut is a stock position at time t, taken to hedge risk in the 
option. 23/37 
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Pricing and hedging as value maximization 

Let’s use one-step variances of the hedge portfolio to specify a 
risk-averse price for the option seller (here λ is a Markowitz-like 
risk aversion parameter): " # 

T 
(ask)

C (S , u) = E0 Π0 + λ e −rt Vart [Πt ] S0 = S , u0 = u0 ∑ 
t=0 

The option seller should minimize this option price to be 
competitive. Equivalently, we can flip the sign and formulate the 
problem as maximization of the value function 

(ask)
V (S , u) ≡ −C (S , u).0 

This MDP model can be solved using Dynamic Programming 
(DP), similar to the HMC method. Can use either simulated or 
real-world data! 
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Vapnik’s principle 

”One should avoid solving more difficult intermediate problems 
when solving a target problem” 

V. Vapnik, Statistical Learning Theory, (1998) 
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Reinforcement Learning for option pricing 

I RL solves the same problem as DP, i.e. it finds an optimal 
policy. 

I Unlike DP, RL does not assume that transition probabilities 
and reward function are known. 

I Instead, RL relies on samples to find an optimal policy. 

I A RL solution implements Mark Twain’s and Vapnik’s 
principles: it focuses on the target problem and crosses out all 
wrong words! 

RL pricing = BS − No Arbitrage − Model − PDEs + Q-Learning 
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Batch-mode RL 

n oN(n)
Data: N trajectories, the information set Ft = F .t 

n=1 
(n)

For each trajectory n, F contains:t 

I The stock price St 
I The hedge position at 
I Instantaneous reward Rt 

I The next-time value St+1: n� �oT −1(n) (n) (n) (n) (n)F = S , a , R , S (3)t t t t t+1 
t=0 
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Bellman equation and rewards in the MDP option pricing 
model 

The Bellman equation for our model: 

V π π(St ) = E [R(St , at , St+1) + γVt 
π 
+1 (St+1)] t t 

Here R(St , at , St+1) is a one-step time-dependent random reward 

Rt (St , at , St+1) = γat ΔSt − λVart [Πt ] 

The one-step reward is a risk-adjusted portfolio return of the 
Markowitz theory! 
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Action-value function 
The action-value function, or Q-function, is defined by an 
expectation of the same expression as in the definition of the value 
function, but conditioned on both the current state St and the 
initial action a = at , while following a policy π afterwards: 

Qπ(x , a) = Et [ −Πt (St )| St = x , at = a] (4)t " # 
T 

π− λ Et ∑ e −r (t
0−t)Vart [Πt 0 (St 0 )] x , a 

t 0 =t 

The Bellman equation for the Q-function: 

πQπ(x , a) = Et [ Rt | x , a] + γE [ Vt 
π 
+1 (St+1)| x ] (5)t t 

? 
T (x , a) is obtained when (4) isAn optimal action-value function Q 
?evaluated with an optimal policy π :t 

Qπ 
t 

? = arg maxt π 
π (x , a) (6) 
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Q-Learning 

Give me a place to stand, and a set of basis functions rich enough, 
and I will move the world. 

Anonymous 

I Q-Learning (Watson 1989) is a model-free and off-policy 
method of solving RL directly from data. 

I In its original form (Watkins 1989), applies only for a 
discrete-state/discrete-action MDP model. 

I Q-Learning converges with probability one, given enough data 
(Watkins 1989). 

I Extended to continuous state-action cases in Fitted Q 
Iteration (FQI) method (Ernest et. al. 2005, Murphy 2005). 

I FQI expands optimal action and Q-function in a set of basis 
functions, similar to the HMC method of Potters and 
Bouchaud (2001). 
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Q-Learning for the Black-Scholes problem (QLBS) model 

I The QBLS model is a MDP model that reduces to the BS 
model (if stock prices are log-normal!) in the limit Δt → 0 
and λ → 0 

I This limit is degenerate: risk disappears, nothing to optimize 
anymore! 

I Dynamic Programming solution when the model is known 

I Reinforcement Learning FQI solution when the model is 
unknown 

I As the RL solution relies on Q-Learning and FQI, it is a 
model-free and off-policy solution 

I Simple semi-analytical solutions for both the DP and RL 
settings (needs only Linear Algebra) 

I Extendable in many ways, e.g. can use an Inverse RL (IRL) 
formulation 

31/37 



QLBS vs BS: comparison 
I The classical BS model and other Mathematical Finance 

models compute a ”fair” ”risk-neutral” option prices, ignore 
risk in options. 

I In the QLBS model, residual risk in options is priced, 
consistently with a hedge applied. 

I In the BS model, hedging comes after pricing. 
I In the QLBS model, hedging comes ahead of pricing. 
I In the QLBS model, the price and the hedge are part of the 

same formula and are outputs of the same value maximization 
procedure. In the BS model, they are two different 
expressions. 

I The Black-Scholes model is obtained in the continuous-time 
limit of such Markowitz model with log-normal dynamics of 
stock prices. 

I The QLBS model involves only finite sums and linear algebra. 
The BS model involves special functions such as N (d1) and 
N (d2). 
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FQI solution: on-policy learning 
The ATM European put option: 
Parameter values: K = 100, T = 1, S0 = 100, µ = 0.05, 
σ = 0.15, r = 0.03, Δt = 1/24, λ = 0.001. Two sets of MC with 
NMC = 50, 000. 
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Figure: RL solution (Fitted Q Iteration) for off-policy learning with noise
parameter η = 0.5 for the ATM put option on a sub-set of MC paths for
two MC runs.
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FQI solution: off-policy learning 
Produce randomized hedges from optimal DP hedges by 
multiplying by a random uniform number in the interval 
[1 − η, 1 + η] where 0 < η < 1. Take the values of 
η = [0.15, 0.25, 0.35, 0.5] to test the noise tolerance of our 
algorithms. Results for η = 0.5: 
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Figure: Means and standard deviations of option prices obtained with 
off-policy FQI learning with data obtained by randomization of DP 
optimal actions. Horizontal red lines show values obtained with on-policy 
learning corresponding to η = 0. 
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Summary 

1. The QLBS model shows that we can price and hedge options 
using only the option replication idea of Black, Scholes and Merton 
and Q-Learning, and nothing else! 
2. The model does not need the following: No Arbitrage, a model 
of stock prices, the BS equation, and PDE’s in general, uses 
instead the trading data and Q-learning. 
3. The original BS model is obtained as a non-physical 
(continuous-time and zero risk) limit of a multi-period Markowitz 
problem for a portfolio of a stock and cash. 
3. The QLBS approach is extendable to multiple factors, 
transaction costs, early exercises etc. 
4. Extensions to high-dimensional portfolio settings are non-trivial. 
5. The QLBS model suggests that we can do option pricing in 
Quantitative Finance without no-arbitrage. Can other ideas from 
Physics and Machine Learning help to build tractable models 
without competitive market equilibrium? 
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Thank you! 
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